An Optimization-Based Sampling Scheme for Phylogenetic Trees
نویسندگان
چکیده
Much modern work in phylogenetics depends on statistical sampling approaches to phylogeny construction to estimate probability distributions of possible trees for any given input data set. Our theoretical understanding of sampling approaches to phylogenetics remains far less developed than that for optimization approaches, however, particularly with regard to the number of sampling steps needed to produce accurate samples of tree partition functions. Despite the many advantages in principle of being able to sample trees from sophisticated probabilistic models, we have little theoretical basis for concluding that the prevailing sampling approaches do in fact yield accurate samples from those models within realistic numbers of steps. We propose a novel approach to phylogenetic sampling intended to be both efficient in practice and more amenable to theoretical analysis than the prevailing methods. The method depends on replacing the standard tree rearrangement moves with an alternative Markov model in which one solves a theoretically hard but practically tractable optimization problem on each step of sampling. The resulting method can be applied to a broad range of standard probability models, yielding practical algorithms for efficient sampling and rigorous proofs of accurate sampling for heated versions of some important special cases. We demonstrate the efficiency and versatility of the method by an analysis of uncertainty in tree inference over varying input sizes. In addition to providing a new practical method for phylogenetic sampling, the technique is likely to prove applicable to many similar problems involving sampling over combinatorial objects weighted by a likelihood model.
منابع مشابه
Quantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species
Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...
متن کاملAlgorithms for constructing more accurate and inclusive phylogenetic trees
Despite the unprecedented outpouring of molecular sequence data in phylogenetics, the current understanding of the tree of life is still incomplete. The widespread applications of phylogenies, ranging from drug design to biodiversity conservation, repeatedly remind us of the need for more accurate and inclusive phylogenies. My thesis addresses some of the underlying challenges, by presenting th...
متن کاملQuantitative Comparison of Tree Pairs Resulted from Gene and Protein Phylogenetic Trees for Sulfite Reductase Flavoprotein Alpha-Component and 5S rRNA and Taxonomic Trees in Selected Bacterial Species
Introduction: FAD is the cofactor of FAD-FR protein family. Sulfite reductase flavoprotein alpha-component is one of the main enzymes of this family. Based on applications of this enzyme in biotechnology and industry, it was chosen as the subject of evolutionary studies in 19 specific species. Method: Gene and protein sequences of sulfite reductase flavoprotein alpha-component, 5S rRNA sequence...
متن کاملBuilding Consensus with Balanced Splits
Given the multitude of sources for reconstructing the evolutionary history between entities, phylogenetic reconstruction methods often provide several trees classifying these entities. A key step in reconciling the different trees is to construct a consensus view of the history. If we consider each tree as a collection of laminar splits (two-way partitions), the primary problem in arriving at a...
متن کاملA Linear Time Approximation Scheme for Maximum Quartet Consistency on Sparse Sampled Inputs
Phylogenetic tree reconstruction is a fundamental biological problem. Quartet amalgamation combining a set of trees over four taxa into a tree over the full set stands at the heart of many phylogenetic reconstruction methods. This task has attracted many theoretical as well as practical works. However, even reconstruction from a consistent set of quartet trees, i.e. all quartets agree with some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2011